Reg.No.:					
----------	--	--	--	--	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 5017

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – MAY / JUNE 2024 Fifth Semester

Computer Science and Engineering U19CS519 – ARTIFICIAL INTELLIGENCE (Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$		(arks
Q.No.	Questions	Marks	KL	CO
1.	What is "Artificial Intelligence? How to define a problem as state space search?	2	K2	CO1
2.	Compare and Contrast the uniformed and informed search.	2	K1	CO1
3.	For the given sentence "All Pompians were Romans" write a well formed formula in predicate logic.	2	K2	CO2
4.	What are the four properties for knowledge representation?	2	K2	CO2
5.	Compare production based system with frame based system.	2	K1	CO3
6.	Define Dempster-Shafter Theory and write the semantics of Bayesian network?	2	K1	CO3
7.	What are the differences and similarities between problem solving and planning?	2	K2	CO4
8.	Define Reinforcement Learning.	2	K1	CO4
9.	Sketch the Components of an Expert System Shell.	2	K2	CO5
10.	How meta knowledge is represented in rule-based expert systems?	2	K3	CO5

PART – B

				$(5 \times 13 =$		
Q.N	No.		Questions	Marks	KL	CO
11.	a)	i.	Explain in detail, the structure of different intelligent agents with neat sketch.	t 7.	K2	CO1
		ii.	Enumerate Classical "Water jug Problem". Describe the state space for this problem and also give the solution. (OR)	e 6		
	b)	i.	Discuss the Breadth First Search Technique with ar example.	n 7	K2	CO1
		ii.	Solve the following Crypt arithmetic problem using constraints satisfaction search procedure.	g 6		
			SEND MORE			
			MONEY			
12.	a)	i.	Trace the operation of the unification algorithm on each of the following pairs of literals:	f 5	K2	CO2
			a. f(Marcus) and f(Caesar) f(x) and f(g(y))b. (Marcus,g(x,y)) and f(x,g(Caesar,Marcus))			
		ii.	Describe alpha-beta pruning and the Minmax game playing with an example.	g 8		
			(OR)			>
	b)	i.	Consider the following sentences	7	K2	CO2
			John likes all kinds of food			
			Apples are food			
			• Chicken is food			
			Anything anyone eats and isn't killed by is foodBill eats peanuts and is still alive			
			• Sue eats everything Bill eats			
			Translate these sentences into formulas in predicate logic and the resultant into clause form.	;		
		ii.	Explain Resolution in brief with an example.	6		
13.	a)	i.	Elucidate the frame based knowledge representation techniques.		K2	CO3
		ii.	Explain backward chaining with an example. (OR)	6		
	b)	i.	Explain forward chaining with an example.	6	K2	CO3
		ii.	Discuss the Dempster-Shafer Theory with an example.	7		

14.	a)	Consider the problem of changing a flat tire. The goal is to have a good spare tire properly mounted onto the car's axle, where the	13	K3	CO4		
		initial state has a flat tire on the axle and a good spare tire in the trunk. To keep it simple, our version of the problem is an abstract					
		one, with no sticky lug nuts or other complications. There are just four actions: removing the spare from the trunk, removing the flat					
	248	tire from the axle, putting the spare on the axle and leaving the car unattended overnight. Write the STRIPS and find out the solution. (OR)					
	b)	Reinforcement learning is an approach to machine learning and explain different types of reinforcement learning algorithms with real time examples.	13	K2	CO4		
15.	a)	Illustrate the architecture, characteristic features and roles of	13	K2	CO5		
		expert system with neat sketch.					
		(OR)					
	b)	Elucidate the need, significance and evolution of MYCIN expert system for Medical Diagnosis and Treatment.	13	K3	CO5		
		PART – C					
$PARI - C$ $(1 \times 15 = 15 \text{ Marks})$							
Q.N	Jo	Questions	Marks	KL	CO		
16.	a)	Illustrate what types of control strategy is used in the following problem with an example.	15	K3	CO1		
		a. The Tower of Hanoi					
		b. The Missionaries and cannibals problems					
		c. 8-puzzle problem					
+		d. Crypto-arithmetic					
		(OR)					
	b)	Design an expert system for Travel recommendation and discuss	15	K4	CO5		
		its roles with neat sketch.					